skip to main content


Search for: All records

Creators/Authors contains: "Schoeman, David S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Context

    Processes that shape genomic and ecological divergence can reveal important evolutionary dynamics to inform the conservation of threatened species.Fontaineais a genus of rainforest shrubs and small trees including critically endangered and threatened species restricted to narrow, but complex geographic and ecological regions. Several species ofFontaineaare subject to spatially explicit conditions and experience limited intra-specific gene flow, likely generating genetic differentiation and local adaptation.

    Objectives

    Here, we explored the genetic and ecological mechanisms underlying patterns of diversification in two, closely related threatenedFontaineaspecies. Our aim was to compare spatial patterns of genetic variation between the vulnerableFontainea australis(Southern Fontainea) and critically endangeredF. oraria(Coastal Fontainea), endemic to the heterogeneous subtropical region of central, eastern Australia, where large-scale clearing has severely reduced rainforest habitat to a fraction (< 1%) of its pre-European settlement extent.

    Methods

    We used a set of 10,000 reduced-representation markers to infer genetic relationships and the drivers of spatial genetic variation across the two species. In addition, we employed a combination of univariate and multivariate genome-environment association analysis using a set of topo-climatic variables to explore potential patterns of local adaptation as a factor impacting genomic divergence.

    Results

    Our study revealed that Coastal Fontainea have a close genetic relationship with Southern Fontainea. We showed that isolation by distance has played a key role in their genetic variation, indicating that vicariance can explain the spatial genetic distribution of the two species. Genotype-environment analyses showed a strong association with temperature and topographic features, suggesting adaptation to localised thermal environments. We used a multivariate redundancy analysis to identify a range of putatively adapted loci associated with local environmental conditions.

    Conclusions

    Divergent selection at the local-habitat scale as a result of dispersal limitations and environmental heterogeneity (including physical barriers) are likely contributors to adaptive divergence between the twoFontaineaspecies. Our findings have presented evidence to indicate that Southern and Coastal Fontainea were comprised of distinct genetic groups and ecotypes, that together may form a single species continuum, with further phenotype research suggested to confirm the current species boundaries. Proactive conservation actions, including assisted migration to enhance the resilience of populations lacking stress-tolerant single nucleotide polymorphisms (SNPs) may be required to secure the long-term future of both taxa. This is especially vital for the critically endangered Coastal Fontainea given projections of habitat decline for the species under future climate scenarios.

     
    more » « less
  2. For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.

     
    more » « less
  4. Abstract

    Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area‐based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate‐smart framework that prioritizes the protection of climate refugia—areas of low climate exposure and high biodiversity retention—using climate metrics. We explore four aspects of climate‐smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate‐smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate‐smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade‐offs between: (1) the degree to which they are climate‐smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate‐smart framework helps transition conservation planning toward climate‐smart approaches.

     
    more » « less